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Abstract

Statistical data assimilation systems require the specification of forecast and observation

error statistics. Forecast error is due to model imperfections and differences between the ini-

tial condition and the actual state of the atmosphere. Practical four-dimensional variational

(4D-Var) methods try to fit the forecast state to the observations and assume that the model

error is negligible. Here with a number of simplifying assumption, a framework is developed

for isolating the model error given the forecast error at two lead-times. Two definitions are

proposed for the Talagrand ratio r, the fraction of the forecast error due to model error rather
than initial condition error. Data from the CPTEC Eta Model running operationally over South
America are used to calculate forecast error statistics and lower bounds for r.

1 Introduction

Data assimilation systems combine satellite data and other measurements with a first guess coming

from a predictive model to produce an analysis or estimate of the state of the atmosphere. This

estimate can be used as an initial condition for numerical weather prediction, or a sequence of

estimates can be used to study Earth Science phenomena. In statistical data assimilation methods

the analysis is a weighted average of the model forecast and current observations. The weighting

is determined by the specification of forecast and observation error statistics. For instance, where

forecast error is large, more weight is given to observations. Forecast error statistics also determine

how observations correct forecast errors in a neighborhood of the observation.
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Figure 1" Contour plots at 500 mb of the forecast height error bias at (a) 24 hours (b) 48 hours and

of the forecast height error standard deviation at (c) 24 hours and at (d) 48 hours; units are meters.

and 12 UTC. The CPTEC Eta Model forecast error is approximated by the difference of the fore-

cast and the NCEP operational analysis. We note that quality of the 0Z and 12Z NCEP analyses is

likely different since the number of observations is greater at 12Z. The NCEP analysis, interpolated

onto the Eta grid, is also the initial condition for the operational CPTEC Eta model. We calculate

forecast error statistics for the period during August of 1998 using a subset of the complete set

of predicted variables, namely the height fields at three levels 300, 500 and 700 mb on the region

85W to 30W and 45S to 10S interpolated onto a 0.4 ° x 0.4 ° grid. The forecast error mean and

standard deviation are shown at the 500 mb level in Fig. 1.

Much of the systematic difference between forecast and analysis is related to the spectral to-

pography representation of the analysis. The spectral topography of the NCEP analysis is very

different from the mountain-step coordinate representation of the Eta model near the Andes. The

resulting NCEP analysis fields when interpolated onto the Eta model grid are incompatable with

the Eta model topography. Features in the western part of the domain are independent of the

forecast lead-time while systematic differences between Eta forecast and NCEP analysis over the



2 Methodology

In the context of linear dynamics, we can obtain the model error covariance given the forecast

error covariances at two lead-times, for instance given the 24-hour and 48-hour forecast error

covariances. Define forecast error ek;k+l to be the error of the forecast starting at time k and valid

at time k + 1. We use time-steps of 24-hours. The 24-hour forecast error ek;k+l is the difference at

time k + 1 of the 24-hour forecast and the true state tWk+l,

_k;k+l = Mk;k+lW_ - w_¢+l ; (1)

Ck;k+2= Mk;k+2G -- w +2. (2)

as shown by

ek;k+2 = Mk;k+2w_ -- w_+2 = Mk+l;k+2(Mk;k+lW_ -- w_¢+l) -- e_+2

= Mk+l;k+2_-k;k+l -- (:_+2 •

The model error e_+ 1 is defined by

_t+l = W_+ 1 -- Mk;k+,w_¢ •

The 48-hour forecast error is due to the propagated 24-hour forecast error and the model error

(3)

(4)

The 24-hour and 48-hour forecast error covariances Pk;k+l and Pk;k+2 satisfy

T
Pk;k+2 = (£k;k+2E-k;k+2) T: Mk+l;k+2Pk;k+lMk+l;k+2 + Qk+l, (5)

where we have taken (e_(e_) r} = Qk; we use the notation (.) to denote ensemble average. There-

fore, the model error covariance Qk+l can be obtained given the dynamics Mk+l:k+2 and the fore-

cast error covariances Pk;k+_ and Pk;k+2.

There are difficulties with the method presented above. First, the true state, and hence the

forecast error, is unknown. Therefore, we make the approximation of replacing the true state by

the verifying analysis, i.e., instead of (1) we take

a
ek;k+ 1 ---- Mk;k+lW _ --Wk_F1. (6)

w_ is the analysis at time k and Mk;k-i- 1 is the linear operator that advances the state from time k to

time k + 1. Likewise, define the 48-hour forecast error ek;k+2 to be the difference of the 48-hour

forecast and the true state w_+ 2 at time k + 2,



Another lower bound for 7-var depends on the variance Al(P24) associated with the leading

eigenvector of the 24 hour forecast error covariance and the quantity tr MM r, namely:

7_a, > 1 I_(P24) tr(MMW). (10)
tr P4s

This lower bound reflects a worse-case situation where spectrum of the 24 hour forecast error

covariance is flat. Recall that

12

trMMT = E_r_(M)' (ll)
i=1

and is the expected amplification of the variance of an uncorrelated, homogeneous random initial

condition (Tippett 1999). Therefore, given the singular values of M and the eigenvalues of the 24

and 48 hour forecast error covariance, lower bounds for 7-v_rcan be obtained.

Another measure of the model error is the volume Talagrand ratio _'vol defined as (Schneider &

Griffies 1999)

{ detO ) 1In : (det(P48-MP24MT))Un ;Tvol = \det P4s det P4s (12)

n is the dimension of the state-space. This definition has the following geometric interpretation.

For a Gaussian random variable with zero mean and covariance P, the ellipsoid Ep(P) that encloses

some fraction 0 < p < 1 of the cumulative probability distribution has a volume proportional to

(det P)1/_. Therefore, the Talagrand ratio "rvolis the square of the geometric mean of the semiaxis

lengths of the model error ellipsoid Sp(O) over the square of the geometric mean of the semiaxis

lengths of the 48-hour forecast error ellipsoid Ep(Q). We note that this definition is invariant under

general nonsingular transformations of the state-space. As a consequence, 7-voldoes not depend on

the choice of inner product. A lower bound for 7_ol is

Tvol > 1 - ((det M)2 det P24 _1

/n

- det P48 ] (13)

Special care in calculating _'_o_must be taken when the covariance or dynamics matrices are sin-

gular. The simplest remedy and the one we use here is to compute the determinants on a reduced

spaces where the matrices are nonsingular.

In Fig. 3 we plot lower bounds for _-_a_and 7-vo_as function of the singular values of the dynamics

for the approximate forecast error covariance matrices calculated here for the Eta model. If the

model dynamics does not amplify the 24-hour forecast error, the 48-hour forecast error is due
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Figure 4: The standard deviations of the (a) 24-hour and (b) 48-hour forecast anomaly height fields

plotted at 500 mb. Units are meters

modes associated with small eigenvalues are likely to suffer from sampling error. On the other

hand, keeping too few modes produces dynamics that does not produce growth. Here we choose to

retain 5 modes of P2/4 explaining 85% of its total variance. Later we show how the lower bounds

for T depend on the number of modes retained.

Figure 4 shows the standard deviation of the 24 and 48 hour forecast height anomaly fields.

As expected there are only slight differences between the standard deviation of the 24 and 48 hour

height anomaly fields; both should approximate the natural variability of the height field during this

period. The variability of the model may be different from the model error. For instance, model

error may be a results of the model not presenting the same variability seen in nature. However,

there are some similarities between the two here. Model error is much noisier. Calculation of the

principle angles show that the leading eigenmodes of P_4 and P418 span approximately the same

subspaces.

Figure 5(a) shows the singular values of M. Although the dynamics is stable by construction

with all eigenvalues inside the unit circle, there are singular values greater than one, indicating

nonmodal growth. Figure 5(b) shows the extent to which the Markov model dynamics is able

to propagate the 24 hour forecast height anomaly. The deterministic part of the signal is not

substantially larger than the random component. The covariance of the residual (bb w) is computed

in the full-space and is larger than the truncated part of the anomaly covariances.

Figure 6 shows the leading right and left singular vectors of M. Their structure is related to the

entrance of fronts and cyclogenesis in the Atlantic; 9 fronts passed through the region during the

period. Using the singular values of the Markov model M in (9) and (10) gives as lower bound for

9
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Figure 7: The lower bounds in Eq. (9) (solid line), Eq. (10) (dashed line) and Eq. (13) (dotted

dashed line) as function of the number k of modes used in the Markov model calculation.

the Talagrand ratio 7var )" 0.37 and Tvar _ 0.76 respectively; (13) gives 7-vol_> 0.70 where we have

conservatively used only 3 modes to compute determinants. Using more modes in the calculation

of the Markov dynamics increases the singular values and decreases the lower bound as shown in

Fig. 7. Of the three lower bounds, (9) is the most sensitive to the number of modes retained since

it depends only on the size of the largest singular value or 1 (M) of M.

The lower bounds for 7- come from assuming that the 24-hour errors project favorably onto

the growing modes of the dynamics. However, the dimension of both the subspace of dominant

forecast errors and of the subspace of dynamically growing modes, around 10, is small compared

to the dimension of the full space 36,990. The likelihood that two arbitrarily chosen subspaces

intersect is therefore small. We first compare the subspaces spanned by the forecast errors and by

the forecast anomalies by comparing their principle angles (see Appendix). Figure 8 shows that

there is reasonable correspondence between the subspaces spanned by the forecast error and the

forecast anomaly. The correspondence is less at 48-hours than at 24 hours. At both lead times there

are principle angles of about 80 ° indicating that there are forecast errors that project very weakly

onto the subspace spanned by the forecast anomaly.

For the forecast anomaly dynamics to be able to amplify efficiently 24-hour forecast errors into

48-hour forecast errors, there must be a favorable relationship between the leading subspaces of the

error covariance and the singular vectors of the dynamics. Namely, the 24-hour forecast errors must

project onto the leading right singular vectors of the dynamics and the 48-hour forecast errors must

project onto the left singular vectors of the dynamics. In Fig. 9 we compare the subspaces spanned

by the errors and by the singular vectors of the Markov model. In Fig. 9(a) we observed that the

11
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Figure 10: As in Fig. 2 with the addition of the eigenvalues of MP24M T (solid line with x's).
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Figure 11: Contour plots of the standard deviation of (a) O and (b) MP24M T shown at 500 mb.

Units are meters.

Figure 11 where the standard deviation of Q and M P24 IvIT are shown demonstrates that the model

error dominates the propagated forecast error and is little different from the 48-hour forecast error.

4 Concluding Remarks

Characterization of prediction model error is important for understanding the performance of data

assimilation systems. Advanced sequential data assimilation methods capable of calculating the

propagated analysis error require specification of the model error. 4D-Var adjoint methods assume

that the model error is negligible.

A measure of the relative size of the model error is the Talagrand ratio m, the fraction of the

forecast error due to model error. We have proposed two definitions for T. The first is simply the

ratio of the model error variance to forecast error variance; the underlying norm is the RMS one.

13



References

Bennett, A. F. (1992). Inverse Methods in Physical Oceanography. Cambridge University Press.

Black, T. L. (1994). The new NMC mesoscale eta model: Description and forecast examples, Wea.

Forecasting 9, 265-278.

Chou, S. C. (1996). Model Regional Eta, Climan(dise.

Cohn, S. E. (1997). An Introduction to Estimation Theory, J. Meteor. Soc. Japan 75,257-288.

Dee, D. P. (1995). On-line estimation of error covariance parameters for atmospheric data assimi-

lation, Mon. Wea. Rev. 123, 1128-1145.

Ehrendorfer (1994). The Liouville equation and its potential usefulness for the prediction of fore-

cast skill. Part I Theory, Mon. Wea. Rev. 122, 703-713.

Ehrendorfer, M. & Tribbia, J. (1997). Optimal Prediction of Forecast Error Covariances through

Singular Vectors, J. Atmos. Sci. 54, 286-313.

Epstein, E. S. (1969). Stochastic Dynamic Prediction, Tellus 21,739-759.

Farrell, B. E (1990). Small Error Dynamics and the Predictability of Atmospheric Flows, J. Atmos.

Sci. 47, 2409-2416.

Ghil, M. & Malanotte-Rizzoli, E (1991), Advances in Geophysics, Vol. 33, Academic Press, chap-

ter Data assimilation in meteorology and oceanography, pp. 141-266.

Golub, G. H. & Van Loan, C. E (1996). Matrix Computations. Third edn, The Johns Hopkins

University Press, Baltimore. 694 pp.

Gustafsson, N., K_ill6n, E. & Thorsteinsson, S. [_1P998). Sensitivity of forecast errors to initial and

lateral boundary conditions, Tellus 50A, 167-185.

Houtekamer, E L. & Mitchell, H. L. (1998). Data Assimilation Using an Ensemble Kalman Filter

Technique, Mon. Wea. Rev. 126, 796-811.

Leith, C. E. (1974). Theoretical skill of Monte Carlo forecasts, Mon. Wea. Rev. 102, 409-418.

15


